Chromatic Equivalence Class of the Join of Certain Tripartite Graphs

${ }^{1,3}$ G.C. Lau \& ${ }^{2,3}$ Y.H. Peng
${ }^{1}$ Faculty of I. T. and Quantitative Science
Universiti Teknologi MARA (Johor Branch)
Segamat, Johor, Malaysia
${ }^{2}$ Department of Mathematics, and
${ }^{3}$ Institute for Mathematical Research
Universiti Putra Malaysia 43400 UPM Serdang, Malaysia
E-mail: yhpeng@fsas.upm.edu.my

Abstract

For a simple graph G, let $\mathrm{P}(\mathrm{G} ; \lambda)$ be the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent, denoted $G \sim H$ if $P(G ; \lambda)=P(H ; \lambda)$. A graph G is said to be chromatically unique, if $H \sim G$ implies that $H \cong G$. Chia [4] determined the chromatic equivalence class of the graph consisting of the join of p copies of the path each of length 3. In this paper, we determined the chromatic equivalence class of the graph consisting of the join of p copies of the complete tripartite graph $K_{1,2,3}$. MSC: 05C15;05C60

Keywords: Tripartite graphs; Chromatic polynomial; Chromatic equivalence class

INTRODUCTION

All graphs considered in this paper are finite, undirected, simple and loopless. For a graph G, we denote by $P(G ; \lambda)($ or $P(G))$, the chromatic polynomial of G. Two graphs G and H are said to be chromatically equivalent, or χ-equivalent, denoted $G \sim H$ if $P(G)$ $=P(H)$. It is clear that the relation $" \sim "$ is an equivalence relation on the family of graphs. We denote by $[G]$ the equivalence class determined by G under $" \sim$ ". A graph G is said to be chromatically unique, or χ-unique, if $[G]=\{G\}$, i.e., $H \sim G$ implies that $H \cong G$. Many families of χ-unique graphs are known (see [8, 9]), relatively fewer results concerning the chromatic equivalence class of graphs are known (see [2, 3, 4]). In this paper, our main purpose is to determine the chromatic equivalence class of the graph consisting of the join of p copies of the complete tripartite graph $K_{1,2,3}$.

In what follows, we let K_{n} denote the complete graph on n vertices, $K_{p 1, p 2, \ldots, p t}$ the complete t-partite graph having n_{i} vertices in the i-th partite set, P_{n} and C_{n} the path and cycle on n vertices, respectively and $\chi(G)$ the chromatic number of G. Let W_{n} denote the wheel of order n and U_{n} the graph obtained from W_{n} by deleting a spoke of W_{n}. Also let $n(A, G)$ denote the number of subgraph A in G and $i(A, G)$ the number of induced subgraph A in G.

The join of two graphs G and H, denoted $G+H$, is the graph obtained from the union of G and H by joining every vertex of G to every vertex of H.
Let F be a graph and let $G=F+F+\ldots+F$ or $p F$ denote the join of $p(\geq 2)$ copies of F. We wish to determine $[G]$. Let $J_{p}(F)$ denote the set of all graphs H which are of the form $H=H_{1}+H_{2}+\ldots+H_{p}$, where $H_{i} \in[F], i=1,2, \ldots, p$.
In [4], Chia posed the following problem
Problem: What are those graphs F for which $J_{p}(F)=[G]$?.
and solve the problem for the case $F=P_{4}$. In this paper, by making very minor modifycation to the technique used in [4], we solve the above problem for the case $F=K_{1,2,3}$.

PRELIMINARY RESULTS AND NOTATIONS

A spanning subgraph is called a clique cover if its connected components are complete graphs. Let G be a graph on n vertices. Let $s_{k}(G)$ denote the number of clique cover of G with k connected components, $k=1,2, \ldots, n$. If the chromatic polynomial of G is
 $\sigma(\mathrm{G}, \mathrm{k})=\sum_{k=1}^{n} s_{k}(\bar{G}) x^{k}$ is called the σ-polynomial of G (see Brenti(1992)). It is easy to see that $\sigma(G, x)=x^{n}$ if and only if $G=K_{n}$ since $s_{k}(G)=0$ for $k<\chi(G)=n$. Also note that $s_{n}(G)=1$ and $s_{n^{\prime \prime}}(G)=m$ if G has m edges. Clearly, $P(G, \lambda)=P(H, \lambda)$ if and only if $\sigma(G, x)=\sigma(H, x)$ and $s_{k}(G)=s_{k}(H)$ for $k=1,2, \ldots$
If $\sigma(G, x)=x f(x)$ for some irreducible polynomial $f(x)$ over the rational number field, then $\sigma(G, x)$ is said to be irreducible.

Lemma 2.1. (Farrell (1980)) Let G and H be two graphs such that $G \sim H$. Then G and H have the same number of vertices, edges and triangles. If both G and H has no K_{4} as subgraph, then $i\left(C_{4}, G\right)=i\left(C_{4}, H\right)$. Moreover,

$$
\begin{aligned}
& -i\left(C_{5}, G\right)+i\left(K_{2,3}, G\right)+2 i\left(U_{5}, G\right)+3 i\left(W_{5}, G\right) \\
& \quad=-i\left(C_{5}, H\right)+i\left(K_{2,3}, H\right)+2 i\left(U_{5}, H\right)+3 i\left(W_{5}, H\right)
\end{aligned}
$$

Lemma 2.2. (Brenti (1992)) Let G and H be two disjoint graphs. Then

$$
\sigma(G+H, x)=\sigma(G, x) \sigma(H, x) .
$$

In particular,

$$
\sigma\left(K_{\left.n_{1}, n_{2}, \ldots, n_{t}, x\right)}=\Pi_{i=1}^{t} \sigma\left(o_{n_{i}}, x\right) .\right.
$$

Lemma 2.3. (Liu (1992)) Let G be a connected graph with n vertices and m edges. Assume that G is not the complete graph K_{3}. Then

$$
s_{n-2}(G) \leq\binom{ m-1}{2}
$$

and equality holds if and only if G is the path P_{m+1}.

A CHROMATIC EQUIVALENCE CLASS

We first have the following lemma which follows readily from Lemma 2.1.

Lemma 3.1. $\left[K_{1,2,3}\right]=\left\{K_{1,2,3}, K_{2,2,2}\right.$ 絞 t e $\left.e\right\}$ where e is an edge of $K_{2,2,2 .}$.

We now have our main theorem as follow.
Theorem 3.1. Let $G=K_{1,2,3}+K_{1,2,3}+\ldots+K_{1,2,3}$ be the join of p copies of $K_{1,2,3}$. Then $[G]=J_{p}\left(K_{1,2,3}\right)$.

Proof. Let $H \sim G$, we will show that $H \in J_{p}\left(K_{1,2,3}\right)$. Since $P(G)=P(H)$ implies that $\sigma(G)=\sigma(H)$, it is more convenient to look at $\sigma(G)$ and $\sigma(H)$. First note that
 $\sigma\left(K_{1,2,3}\right)=x\left(x^{2}+x\right)\left(x^{3}+3 x^{2}+x\right)=P\left(K_{2,2,2}-e\right)$. So, $\sigma(G)=\left[x\left(x^{2}+x\right)\left(x^{3}+\right.\right.$ $\left.\left.3 x^{2}+x\right)\right]^{p}=\left[\left(x^{2}+x\right)\left(x^{4}+3 x^{3}+x^{2}\right)\right]^{p}$, having p irreducible factors of $x, x^{2}+x$ and $x^{3}+3 x^{2}$ $+x$ respectively.
Let n and m denote the number of vertices and edges in H respectively. Then $n=6 p$ and $m=36\binom{p}{2}+11 p=18 p^{2}-7 p$ so that $\sigma(H)=\sigma(G)=\sum_{i=1}^{6 p} s_{i}(\bar{G}) x^{i}$. Moreover, H is uniquely $3 p$-colorable as G is so.

Let $V_{1}, V_{2}, \ldots, V_{3 p}$ be the color classes of the unique 3p-coloring of H. Let $V_{i j}$ denote the subgraph induced by $V_{1} \cup V_{j}, i \neq j$. Call $V_{i j}$ a 2-color subgraph of H.

Case (i): Every V_{i} has exactly two vertices.
In this case, $V_{i j}$ is either a path P_{4} or else a cycle C_{4} because, by Theorem 12.16 of [6], $V_{i j}$ is connected for $i \neq j$. Note that the number of 2-color subgraphs in H is $\binom{3 p}{2}=\frac{1}{2}\left(9 p^{2}-5 p\right)+p$. By looking at the number of edges in H, we see that exactly p
of the 2-color subgraphs $V_{i j}$ are P_{4} and the rest of the 2-color subgraphs are C_{4}. This means that \bar{H} has only P_{4} and K_{2} as subgraph so that $H=s \overline{P_{4}}+r \overline{K_{2}}(s, r \geq 0)$. Consequently,

$$
\sigma(H)=\left[\left(x^{4}+3 x^{3}+x^{2}\right)^{s}\left(x^{2}+x\right)^{r}\right]=\left[x\left(x^{2}+x\right)\left(x^{3}+3 x^{2}+x\right)\right]^{p}=\sigma(G) .
$$

Obviously, $s, r \geq 1$ so that $\sigma(\mathrm{H})=\left(x^{4}+3 x^{3}+x^{2}\right)\left(x^{2}+x\right) \sigma\left(H_{1}\right)$ and that by Lemma 3.1, $H=\left(K_{2,2,2}-e\right)+H_{1}$ for some graph H_{1}. Since $\sigma\left(H_{1}\right)=\left[x\left(x^{2}+x\right)\left(x^{3}+3 x^{2}+x\right)\right]^{p-1}$, by induction on p, we have $H_{1} \in J_{p-1}\left(K_{1,2,3}\right)$. This implies that $\mathrm{H} \in J_{p}\left(K_{1,2,3}\right)$.

Case (ii): Not every V_{i} has exactly two vertices.
Then there is a j such that $\left|V_{j}\right|=1$. Without loss of generality, let $\left|V_{j}\right|=i$ for $j=1, \ldots$, $r, r \geq 1$. Then $H=K_{r}+H_{*}$ for some graph H_{*}. Let $F_{1}, F_{2}, \ldots, F_{t}$ be the connected components of $\overline{H_{*}}$. Then $H=K_{r}+\overline{F_{1}}+\ldots+\overline{F_{t}}$ with $H_{*}=\overline{F_{1}}+\ldots+\overline{F_{t}}$.

If for some $i, F_{i}=K_{3}$, then \bar{H} contains a subgraph $K_{1} \cup K_{3}$. This means that $H=K_{1,3}+$ H^{\prime} for some graph H^{\prime} and so

$$
\sigma(H)=\left(x^{4}+3 x^{3}+x^{2}\right) \sigma\left(H^{\prime}\right)=\left[x\left(x^{2}+x\right)\left(x^{3}+3 x^{2}+x\right)\right]^{p}=\sigma(G) .
$$

Clearly, $\sigma\left(\mathrm{H}^{\prime}\right)$ must contain a factor $\left(x^{2}+x\right)$ so that $\sigma(H)=\left(x^{4}+3 x^{3}+x^{2}\right) \sigma\left(H^{\prime \prime}\right) \sigma\left(H_{1}\right)$ (where $\left.\sigma\left(H^{\prime \prime}\right)=x^{2}+x\right)$ for some graph H_{1}. Obviously, $\quad \overline{H^{\prime \prime}}=K_{2}$. Hence, $H=K_{1,2,3}+H_{1} \quad$ with $\sigma\left(H_{1}\right)=\left[x\left(x^{2}+x\right)\left(x^{3}+3 x^{2}+x\right)\right]^{p-1}$. Again, by induction on p, we have $H \in J_{p}\left(K_{1,2,3}\right)$.

If for some $i, F_{i}=K_{2,}$, then $H=K_{2}+H^{\prime}$. By the similar argument as above, $\sigma\left(H^{\prime}\right)$ must contain a factor $\left(x^{3}+3 x^{2}+x\right)$ so that $H=K_{1,2,3}+H_{1}$ or $\left(K_{2,2,2}-e\right)+H_{1}$ with $\sigma\left(H_{1}\right)=$ $\left[x\left(x^{2}+x\right)\left(x^{3}+3 x^{2}+x\right)\right]^{p-1}$. Again, by induction on p, we have $H \in J_{p}\left(K_{1,2,3}\right)$.

If for some $i, F_{i}=P_{4}\left(=K_{2,2}-e\right)$, then $H=P_{4}+H^{\prime}$. By the similar argument as above, $\sigma\left(H^{\prime}\right)$ must contain a factor $\left(x^{2}+x\right)$ so that $H=\left(K_{2,2,2}-e\right)+H_{1}$ with $\sigma\left(H_{1}\right)=\left[x\left(x^{2}+\right.\right.$ $\left.x)\left(x^{3}+3 x^{2}+x\right)\right]^{p-1}$. Again, by induction on p, we have $H \in J_{p}\left(K_{1,2,3}\right)$.

So, assume that F_{i} is not K_{2}, K_{3} or P_{4} for any $i=1, \ldots, t$. Let n_{i} and m_{i} denote the number of vertices and edges in F_{i} respectively. Then $\sum_{i=1}^{t} m_{i}=4 p$, the number of edges in \bar{H}.

If $n_{i} \leq 3$, then $F_{i}=P_{3}$. However, this is impossible because $\sigma(G)$ does not contain
$\left(x^{3}+2 x^{2}\right)$ as a factor. Hence, $n_{i} \geq 4$. This implies that $6 p=|V(G)|=r+\sum_{i=1}^{t} n_{i} \geq r+4 t$ so that $t<3 p / 2$ because $r \geq 1$.
Since $H=K_{r}+H_{*}$, we have $\sigma(H)=\chi^{r} . \sigma\left(H_{*}\right)$ It follows that $s_{n-2}(\bar{H})=s_{n_{*}-2}\left(\overline{H_{*}}\right)$ where n_{*} is the number of vertices in H_{*}. Note that

$$
\sigma\left(H_{*}\right)=\sum_{j=1}^{n_{*}} s_{j}\left(\overline{H_{*}}\right) x^{j}=\prod_{i=1}^{t} \sigma\left(\overline{F_{i}}\right)
$$

where

$$
\sigma\left(\overline{F_{i}}\right)=\sum_{k=1}^{n_{i}} s_{k}\left(F_{i}\right) x^{k}=x^{n_{1}}+m_{i} x^{n_{i}-1}+s_{n_{i}-2}\left(F_{i}\right) x^{n_{i}-2}+\ldots,
$$

$i=1, \ldots, t$.
By multiplying all the terms in $\Pi_{i=1}^{t} \sigma\left(\overline{F_{i}}\right)$ and by equating the coefficient of $x^{n_{s}-2}$, we have by Lemma 2.3,

$$
\begin{aligned}
s_{n_{*}-2}\left(\stackrel{\mu}{H_{*}}\right) & =\sum_{1 \leq i \leq j \leq t} m_{i} m_{j}+\sum_{i=1}^{t} s_{n_{i}-2}\left(F_{i}\right) \\
& \leq \sum_{1 \leq i \leq j} m_{i} m_{j}+\sum_{i=1}^{t}\binom{m_{i}-1}{2} .
\end{aligned}
$$

Consequently, $\quad s_{n_{*}-2}\left(\bar{H}_{*}\right) \leq \frac{\sum_{1 \leq i \leq j \leq t} 2 m_{i} m_{j}+\sum_{i=1}^{t}\left(m_{i}^{2}-3 m_{i}+2\right)}{2}$

$$
\begin{aligned}
& =\frac{\left(\sum_{i=1}^{t} m_{i}\right)^{2}-3 \sum_{i=1}^{t} m_{i}+2 t}{2} \\
& =\frac{16 p^{2}-12 p+2 t}{2} \\
& <\frac{16 p^{2}-9 p}{2}
\end{aligned}
$$

because $\mathrm{t}<3 p / 2$. However, this is a contradiction because $s_{n-2}(\bar{H})=s_{6 p-2}(\bar{G})=$ $4 p+16\binom{p}{2}=\left(16 p^{2}-8 p\right) / 2>s_{n *-2}\left(\overline{H_{*}}\right)$. This completes the proof.
Remark: Note that for even p, our main result is a special case of Theorem 5.1 in (Ho, (2004)).

ACKNOWLEDGEMENTS

The authors wish to thanks the referees for their valuable comments and suggestions.

REFERENCES

F. Brenti, Expansions of chromatic polynomial and log-concavity, Trans. Amer. Math. Soc. 332 (1992) 729-756.
C.Y. Chao, On tree of polygons, Arch. Math. 45 (1985) 180-185.
G.L. CHIA, On the chromatic equivalence class of a family of graphs, Discrete Math. 162 (1996) 285-289.
G.L. ChiA, On the chromatic equivalence class of graphs, Discrete Math. 178 (1998) 15-23.
E.J. Farrell, On chromatic coefficients, Discrete Math. 29 (1980) 257-264.
F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).
C.K. Ho, On graphs determined by their chromatic polynomials, Ph.D. thesis (2004) University Malaya, Malaysia.
K.M. Кон and K.L. Teo, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285.
K.M. Koh and K.L. Teo, The search for chromatically unique graphs - II, Discrete Math. 172 (1997) 59-78.
R.Y. Liu, Chromatic uniqueness of Kn - E(kPs rPt), J. System Sci. Math. Sci. 12 (1992) 207-214 (Chinese, English Summary).

