Chromatic Equivalence Class of the Join of Certain Tripartite Graphs

^{1,3}G.C. Lau & ^{2,3}Y.H. Peng

¹Faculty of I. T. and Quantitative Science Universiti Teknologi MARA (Johor Branch) Segamat, Johor, Malaysia ² Department of Mathematics, and ³ Institute for Mathematical Research Universiti Putra Malaysia 43400 UPM Serdang, Malaysia E-mail: yhpeng@fsas.upm.edu.my

ABSTRACT

Keywords: Tripartite graphs; Chromatic polynomial; Chromatic equivalence class

INTRODUCTION

All graphs considered in this paper are finite, undirected, simple and loopless. For a graph *G*, we denote by $P(G;\lambda)$ (or P(G)), the chromatic polynomial of *G*. Two graphs *G* and H are said to be *chromatically equivalent*, or χ -equivalent, denoted $G \sim H$ if P(G) = P(H). It is clear that the relation " \sim " is an equivalence relation on the family of graphs. We denote by [*G*] the equivalence class determined by G under " \sim ". A graph *G* is said to be *chromatically unique*, or χ -unique, if $[G] = \{G\}$, i.e., $H \sim G$ implies that $H \cong G$. Many families of χ -unique graphs are known (see [8, 9]), relatively fewer results concerning the chromatic equivalence class of graphs are known (see [2, 3, 4]). In this paper, our main purpose is to determine the chromatic equivalence class of the graph K_{123} .

In what follows, we let K_n denote the complete graph on *n* vertices, $K_{p1,p2,...,pt}$ the complete *t*-partite graph having n_i vertices in the *i*-th partite set, P_n and C_n the path and cycle on *n* vertices, respectively and $\chi(G)$ the chromatic number of *G*. Let W_n denote the wheel of order *n* and U_n the graph obtained from W_n by deleting a spoke of W_n . Also let n(A,G) denote the number of subgraph *A* in *G* and *i*(*A*,*G*) the number of induced subgraph *A* in *G*.

The join of two graphs G and H, denoted G + H, is the graph obtained from the union of G and H by joining every vertex of G to every vertex of H. Let F be a graph and let $G = F + F + \ldots + F$ or pF denote the join of $p (\geq 2)$ copies of F. We wish to determine [C]. Let L(E) denote the set of all graphs H which are of the

F. We wish to determine [*G*]. Let $J_p(F)$ denote the set of all graphs *H* which are of the form $H = H_1 + H_2 + ... + H_p$, where $H_i \in [F]$, i = 1, 2, ..., p. In [4], Chia posed the following problem

Problem: What are those graphs F for which $J_{p}(F) = [G]$?.

and solve the problem for the case $F = P_4$. In this paper, by making very minor modifycation to the technique used in [4], we solve the above problem for the case $F = K_{1,2,3}$.

PRELIMINARY RESULTS AND NOTATIONS

A spanning subgraph is called a *clique cover* if its connected components are complete graphs. Let *G* be a graph on *n* vertices. Let $s_k(G)$ denote the number of clique cover of *G* with *k* connected components, k = 1, 2, ..., n. If the chromatic polynomial of *G* is $P(G,\lambda) = \sum_{k=1}^{n} s_k(\overline{G})(\lambda)_k$ where $(\lambda)_k = \lambda (\lambda \bowtie 1) \cdots (\lambda \bowtie k+1)$, then the polynomial $\sigma(G, k) = \sum_{k=1}^{n} s_k(\overline{G})x^k$ is called the σ -polynomial of *G* (see Brenti(1992)). It is easy to see that $\sigma(G, x) = x^n$ if and only if $G = K_n$ since $s_k(G) = 0$ for $k < \chi(G) = n$. Also note that $s_n(G) = 1$ and $s_{n^{n_1}}(G) = m$ if *G* has *m* edges. Clearly, $P(G,\lambda) = P(H,\lambda)$ if and only if $\sigma(G, x) = xf(x)$ for some irreducible polynomial f(x) over the rational number field, then $\sigma(G, x)$ is said to be irreducible.

Lemma 2.1. (Farrell (1980)) Let *G* and *H* be two graphs such that $G \sim H$. Then *G* and *H* have the same number of vertices, edges and triangles. If both *G* and *H* has no K_4 as subgraph, then $i(C_4, G) = i(C_4, H)$. Moreover,

$$-i(C_5,G) + i(K_{2,3},G) + 2i(U_5,G) + 3i(W_5,G)$$
$$= -i(C_5,H) + i(K_{2,3},H) + 2i(U_5,H) + 3i(W_5,H).$$

Lemma 2.2. (Brenti (1992)) Let G and H be two disjoint graphs. Then

 $\sigma(G+H, x) = \sigma(G, x)\sigma(H, x) .$

In particular,

$$\mathbf{\sigma}(K_{n_1,n_2,...,n_t}, x) = \prod_{i=1}^t \mathbf{\sigma}(O_{n_i}, x) .$$

Malaysian Journal of Mathematical Sciences

104

Lemma 2.3. (Liu (1992)) Let G be a connected graph with n vertices and m edges. Assume that G is not the complete graph K_{3} . Then

$$s_{n-2}(G) \leq \binom{m-1}{2}$$

and equality holds if and only if G is the path P_{m+1} .

A CHROMATIC EQUIVALENCE CLASS

We first have the following lemma which follows readily from Lemma 2.1.

Lemma 3.1. $[K_{1,2,3}] = \{K_{1,2,3}, K_{2,2,2} | e\}$ where *e* is an edge of $K_{2,2,2}$.

We now have our main theorem as follow.

Theorem 3.1. Let $G = K_{1,2,3} + K_{1,2,3} + \ldots + K_{1,2,3}$ be the join of p copies of $K_{1,2,3}$. Then $[G] = J_p(K_{1,2,3}).$

Proof. Let $H \sim G$, we will show that $H \in J_p(K_{1,2,3})$. Since P(G) = P(H) implies that $\sigma(G) = \sigma(H)$, it is more convenient to look at $\sigma(G)$ and $\sigma(H)$. First note that $\sigma(K_{1,3}) = x(x^3 + 3x^2 + x) = \sigma(K_{2,2} - e)$ with $[K_{1,3}] = \{K_{1,3}, K_{2,2} \otimes e\}$, and $\sigma(K_{1,2,3}) = x(x^2 + x)(x^3 + 3x^2 + x) = P(K_{2,2,2} - e)$. So, $\sigma(G) = [x(x^2 + x)(x^3 + 3x^2 + x)]^p = [(x^2 + x)(x^4 + 3x^3 + x^2)]^p$, having *p* irreducible factors of *x*, $x^2 + x$ and $x^3 + 3x^2 + x$ respectively. Let *n* and *m* denote the number of vertices and edges in *H* respectively. Then n = 6p

and $m = 36\binom{p}{2} + 11p = 18p^2 - 7p$ so that $\sigma(H) = \sigma(G) = \sum_{i=1}^{6p} s_i(\overline{G})x^i$. Moreover, *H* is uniquely 3*p*-colorable as *G* is so.

Let $V_1, V_2, ..., V_{3p}$ be the color classes of the unique 3*p*-coloring of *H*. Let V_{ij} denote the subgraph induced by $V_1 \cup V_j, i \neq j$. Call V_{ij} a 2-color subgraph of *H*.

Case (i): Every V_i has exactly two vertices.

In this case, V_{ij} is either a path P_4 or else a cycle C_4 because, by Theorem 12.16 of [6], V_{ij} is connected for $i \neq j$. Note that the number of 2-color subgraphs in H is $\binom{3p}{2} = \frac{1}{2}(9p^2 - 5p) + p$. By looking at the number of edges in H, we see that exactly p

G.C. Lau & Y.H. Peng

of the 2-color subgraphs V_{ij} are P_4 and the rest of the 2-color subgraphs are C_4 . This means that \overline{H} has only P_4 and K_2 as subgraph so that $H = s\overline{P_4} + r\overline{K_2}$ $(s, r \ge 0)$. Consequently,

 $\sigma(H) = [(x^4 + 3x^3 + x^2)^s (x^2 + x)^r] = [x(x^2 + x)(x^3 + 3x^2 + x)]^p = \sigma(G).$ Obviously, *s*, *r* ≥ 1 so that $\sigma(H) = (x^4 + 3x^3 + x^2)(x^2 + x)\sigma(H_1)$ and that by Lemma 3.1, $H = (K_{2,2,2} - e) + H_1$ for some graph H_1 . Since $\sigma(H_1) = [x(x^2 + x)(x^3 + 3x^2 + x)]^{p-1}$, by induction on *p*, we have $H_1 \in J_{p-1}(K_{1,2,3})$. This implies that $H \in J_p(K_{1,2,3})$.

Case (ii): Not every V_i has exactly two vertices.

Then there is a *j* such that $|V_j| = 1$. Without loss of generality, let $|V_j| = i$ for j = 1, ..., r, $r \ge 1$. Then $H = K_r + H_*$ for some graph H_* . Let $F_1, F_2, ..., F_t$ be the connected components of $\overline{H_*}$. Then $H = K_r + \overline{F_1} + ... + \overline{F_t}$ with $H_* = \overline{F_1} + ... + \overline{F_t}$.

If for some $i, F_i = K_3$, then \overline{H} contains a subgraph $K_1 \cup K_3$. This means that $H = K_{1,3} + H'$ for some graph H' and so

$$\sigma(H) = (x^4 + 3x^3 + x^2)\sigma(H') = [x(x^2 + x)(x^3 + 3x^2 + x)]^p = \sigma(G).$$

Clearly, $\sigma(H')$ must contain a factor $(x^2 + x)$ so that $\sigma(H) = (x^4 + 3x^3 + x^2)\sigma(H'')\sigma(H_1)$ (where $\sigma(H'') = x^2 + x$) for some graph H_1 . Obviously, $\overline{H''} = K_2$. Hence, $H = K_{1,2,3} + H_1$ with $\sigma(H_1) = [x(x^2 + x)(x^3 + 3x^2 + x)]^{p-1}$. Again, by induction on p, we have $H \in J_p(K_{1,2,3})$.

If for some i, $F_i = K_2$, then $H = K_2 + H'$. By the similar argument as above, $\sigma(H')$ must contain a factor $(x^3 + 3x^2 + x)$ so that $H = K_{1,2,3} + H_1$ or $(K_{2,2,2} - e) + H_1$ with $\sigma(H_1) = [x(x^2 + x)(x^3 + 3x^2 + x)]^{p-1}$. Again, by induction on p, we have $H \in J_p(K_{1,2,3})$.

If for some *i*, $F_i = P_4 (=K_{2,2} - e)$, then $H = P_4 + H'$. By the similar argument as above, $\sigma(H')$ must contain a factor (x^2+x) so that $H = (K_{2,2,2} - e) + H_1$ with $\sigma(H_1) = [x(x^2 + x)(x^3 + 3x^2 + x)]^{p-1}$. Again, by induction on *p*, we have $H \in J_p(K_{1,2,3})$.

So, assume that F_i is not K_2 , K_3 or P_4 for any i = 1, ..., t. Let n_i and m_i denote the number of vertices and edges in F_i respectively. Then $\sum_{i=1}^{t} m_i = 4p$, the number of edges in \overline{H} .

If $n_i \leq 3$, then $F_i = P_3$. However, this is impossible because $\sigma(G)$ does not contain

 $(x^3 + 2x^2)$ as a factor. Hence, $n_i \ge 4$. This implies that $6p = |V(G)| = r + \sum_{i=1}^t n_i \ge r + 4t$ so that t < 3p/2 because $r \ge 1$.

Since $H = K_r + H_*$, we have $\sigma(H) = x^r \cdot \sigma(H_*)$ It follows that $s_{n-2}(\overline{H}) = s_{n_*-2}(\overline{H_*})$ where n_* is the number of vertices in H_* . Note that

$$\sigma(H_*) = \sum_{j=1}^{n_*} s_j(\overline{H_*}) x^j = \prod_{i=1}^t \sigma(\overline{F_i})$$

where

$$\sigma(\overline{F_i}) = \sum_{k=1}^{n_i} s_k(F_i) x^k = x^{n_1} + m_i x^{n_i - 1} + s_{n_i - 2}(F_i) x^{n_i - 2} + \dots,$$

i = 1, ..., t.

By multiplying all the terms in $\prod_{i=1}^{t} \sigma(\overline{F_i})$ and by equating the coefficient of χ^{n*-2} , we have by Lemma 2.3,

$$s_{n*-2}(\hat{H}_{*}) = \sum_{1 \le i \le j \le t} m_{i}m_{j} + \sum_{i=1}^{t} s_{n_{i}-2}(F_{i})$$

$$\leq \sum_{1 \le i \le j} m_{i}m_{j} + \sum_{i=1}^{t} \binom{m_{i}-1}{2}.$$
Consequently, $s_{n*-2}(\overline{H}_{*}) \le \frac{\sum_{1 \le i \le j \le t} 2m_{i}m_{j} + \sum_{i=1}^{t} (m_{i}^{2} - 3m_{i} + 2)}{2}$

$$= \frac{\left(\sum_{i=1}^{t} m_{i}\right)^{2} - 3\sum_{i=1}^{t} m_{i} + 2t}{2}$$

$$= \frac{16p^2 - 12p + 2t}{2}$$

< $\frac{16p^2 - 9p}{2}$

because t < 3p/2. However, this is a contradiction because $s_{n-2}(\overline{H}) = s_{6p-2}(\overline{G}) =$

$$4 p + 16 \binom{p}{2} = (16 p^2 - 8 p) / 2 > s_{n_*-2} (\overline{H_*}).$$
 This completes the proof.

Remark: Note that for even p, our main result is a special case of Theorem 5.1 in (Ho, (2004)).

G.C. Lau & Y.H. Peng

ACKNOWLEDGEMENTS

The authors wish to thanks the referees for their valuable comments and suggestions.

REFERENCES

- F. BRENTI, Expansions of chromatic polynomial and log-concavity, Trans. Amer. Math. Soc. 332 (1992) 729-756.
- C.Y. CHAO, On tree of polygons, Arch. Math. 45 (1985) 180-185.
- G.L. CHIA, On the chromatic equivalence class of a family of graphs, Discrete Math. 162 (1996) 285-289.
- G.L. CHIA, On the chromatic equivalence class of graphs, Discrete Math. 178 (1998) 15-23.
- E.J. FARRELL, On chromatic coefficients, Discrete Math. 29 (1980) 257-264.
- F. HARARY, Graph Theory (Addison-Wesley, Reading, MA, 1969).
- C.K. Ho, On graphs determined by their chromatic polynomials, Ph.D. thesis (2004) University Malaya, Malaysia.
- K.M. KOH AND K.L. TEO, The search for chromatically unique graphs, Graphs Combin. 6 (1990) 259-285.
- K.M. KOH AND K.L. Teo, The search for chromatically unique graphs II, Discrete Math. 172 (1997) 59-78.
- R.Y. LIU, Chromatic uniqueness of Kn E(kPs rPt), J. System Sci. Math. Sci. 12 (1992) 207-214 (Chinese, English Summary).